Pulsed Field Gradient NMR

Directly Determined Polymer Self Diffusion Coefficients Compared with Those Derived from Sedimentation or Mutual Diffusion

P.T. Callaghan* and D.N. Pinder

Department of Chemistry, Biochemistry and Biophysics, Massey University, Palmerston North, New Zealand

Presented at the 22nd Microsympoaium, "Characterization of Structure and Dynamics of Macromolecular Systems by NMR Methods", Prague, July 20-23, 1981

ABSTRACT: We show that self-diffusion coefficients derived indirectly from sedimentation or mutual diffusion do not agree with those obtained directly with PFGNMR. We believe that indirect determinations are not valid for random coils at finite concentrations. However the different physical factors governing self-diffusion and sedimentation can be exploited to obtain information on the static and dynamic critical exponents for polymers in semi-dilute solution. We show that such an analysis leads to an anomalously high static index for Ii0 000 M polystyrene in toluene.

INTRODUCTION

..
An indirect self-diffusion coefficient D_o may be calculated from a knowledge of the mutual diffusion coefficient or the sedimentation coefficient according to

$$
D_{s}^{+} = D_{m} (1 - \bar{v}_{c})^{-1} (1 + 2A_{2} \text{Mc} + ...)^{-1}
$$
(1)

$$
D_{s}^{+} = s N_{Av} M^{-1} k_{R} T (1 - \bar{v}_{p})^{-1}
$$
(2)

ROOTS et al (1979) have demonstrated the internal consistency of these equations over a wide concentration range for random coil polystyrene (110 000 M) dissolved in toluene. However D^+ is a derived quantity and is not necessarily identical to the directly measured self-diffusion coefficient, D_{α} . Self-diffusion occurs under conditions of thermodynamic equilibrium by virtue of thermally driven random processes. The mechanisms governing mutual diffusion and sedimentation are not the same as those governing selfdiffusion. This distinction is revealed in the different theoretical approaches to sedimentation and self-diffusion in the entangled regime. Sedimentation for entangled random coil polymer is viewed in terms of the motion of solvent through an essentially fixed network of interlocked coils akin to motion through a porous plug. We can use the scaling theory (BROCHARD and DE GENNES 1977) for sedimentation to obtain an entangled regime scaling law for D^+_{\circ} , namely

$$
\begin{array}{cc}\n\mathbf{s} & \mathbf{c} & (\vee - 1)(3\vee - 1) \\
\mathbf{c} & \mathbf{b}^+ \mathbf{c} & \mathbf{c} & (\vee - 1)(3\vee - 1)\n\end{array}
$$
\n(3)

with very little error since $(1-\bar{v}\rho)$ is concentration insensitive. Using the Flory index, $v=0.6$, one obtains

$$
\mathrm{D}_\mathrm{S}^+ \sim \mathrm{c}^{-0.5}
$$

01 70-0839/81/0005/0305/\$01.00

^{*} Presently on leave at Physics Department, University of British Columbia, Vancouver, Canada

This contrasts markedly with the established scaling law (DE GENNES, 1976) for self diffusion

$$
D_{\text{max}} \sim c^{(2-\nu)/(1-3\nu)} \tag{4}
$$

with exponent approximately -1.75. (HERVET et al, 1979; CALLAGHAN and PINDER, 1980), The discrepancy is not surprising since by contrast with the sedimentation model self-diffusion in the entangled regime concerns the relative motion of coils in a network regarded inherently as transient.

RESULTS AND DISCUSSION

D values have been obtained for 110 000 M polystyrene in deuterotoluene at $$5.0^{\circ}$ C using PFGNMR. (Comparisons between diffusion rates in deutero-benzene and benzene suggest that solvent deuteration has little effect on D_S for the polymer (CALLAGHAN and PINDER, 1981)). Figure 1 shows an echo attenuation plot for Ii0 000 M polystyrene in deutero-toluene at 25.0°C. All data obeyed the Stejskal-Tanner relation for echo attenuation under the pulsed field gradient.

Figure 2 shows the measured self diffusion coefficients values at various concentrations along with the D_S^+ values of Roots et al for 110 000 M polystyrene in toluene at 25.0° C. These latter data were derived from both sedimentation and mutual diffusion measurements. The D_S and D_S^+

306

data converge as $c \rightarrow o$ and yield the same D_o value but elsewhere D_s \neq D_S. low concentrations the discrepancy can be viewed in terms of a difference in the frictional coefficients, k_f , where

$$
D_{s}^{-1} = D_{0}^{-1} (1 + k_{f}c)
$$
 (5)

The Roots et al data yield k_f^+ = 96 whereas our data gives k_f =43^{\pm}3 (gm χ)⁻¹. Our lower value is in good agreement with a value of the frictional coefficient for 75 000 M polymer in toluene reported by CANTOW et al (1965) although the YAMAKAWA theory (1962) predicts a higher value similar to that obtained by ROOTS et al. However added weight is given to the directly measured D_S values by the behaviour of the data at higher concentrations. In figure 2 the data is plotted as log D_S vs log c. The D_S data scale as predicted by the de Gennes model for reptation in a transient network whereas the D^+_S data, while scaling with concentration, fail to exhibit the correct scaling index

Figure 3: log D_s vs log c and log D_s Figure 4: log D_s (dashed line), s vs log c. The D_s data exhibit the (solid line) and D_S/s (data points) correct scaling index for reptatlon, obtained from figure 3 by interpola-The D^{$+$} data do not. $\qquad \qquad$ tion. D_S/s scales according to

equation 9.

Comparisons between s and D_e can be used to investigate the suggestion be WEILL and DES CLOIZEAUX (1979) that the index v should be replaced by the one of two other indices defined as

$$
\nu_{\rm G} = \frac{\partial \ln R_{\rm G}}{\partial \ln R_{\rm D}} / \frac{\partial \ln N}{\partial \ln N}
$$
 (6)

where R_G is a static radius, R_D a dynamic radius and N the polymerization index. The indices v_G and v_O approach the assymptotic value (0.588) only as $N \rightarrow \infty$ but v_G approaches the assymptotic value far more rapidly than does v_D . Indeed for polystyrene of 233 000 molar mass in the semi-dilute regime v_G is predicted to take a value close to 0.6 and v_D a value close to 0.5 (CALLAGHAN and PINDER, 1981).

Callaghan and Pinder have applied the Weill-des Cloizeaux model to self-diffusion in the semi-dilute regime and have shown that

$$
D_c \sim c^{(2-\nu_D)/(1-3\nu_G)}
$$
 (7)

Taking $~\rm{v_D}$ as 0.5 and $\rm{v_G}$ as 0.6 they showed D s $\rm{c}^{-1.87}$ in good agreement with experiment (D $_{\rm S}$ ~c=1.83(4)). POUYET et al (1980) have applied the Weilldes Cloizeaux model to sedimentation and have shown that

$$
s \sim c^{(1-\nu_D)/(1-3\nu_G)}
$$
 (8)

Using equations 7 and 8 it is clear that

$$
D_{\rm c}/\rm s \sim c^{1/(1-3\nu_{\rm G})} \tag{9}
$$

and so the index v_G may be obtained from the measurements of D_S and s.

The only polymer-solvent system investigated by both sedimentation and self-diffusion is polystyrene of 110 000 daltons molar mass in toluene. Figure 4 shows the logarithmic variation of D_S , s and D_S/S with the logarithm of polymer concentration. Smooth curves have been drawn through the s and D_S data to allow interpolation and hence D_S/s values. These data predict a value of v_G a little greater than 0.7. This value is unexpectedly high for the Weill-des Cloizeaux model but it does lend some credence to the notion that v_G should be afforded a value higher than v_D and certainly higher than 0.5. Indeed FRANCOIS et al (1980) have recently published a modified theory which predicts that v_G may assume values approaching 0.7 over a small molar mass range so the data of figure 3 can be considered as a verification of this effect.

However, caution must be exercised in the interpretation of this data for the 110 000 molar mass polystyrene used in this study is not particularly appropriate. It displays only very small concentration scaling regions for both sedimentation and self-diffusion and moreover, these scaling regions are not indentical since s appears to scale at lower concentrations than does D_S . A better comparison could be effected if both sedimentation and self-diffusion measurements were available for a higher molar mass polymer.

CONCLUSIONS

The physical nature of self-diffusion and sedimentation (or mutual diffusion) for random coil polymers in solution is such as to render invalid the inherent assumptions in the D_S^+ equations. These equations are valid only in the limit as $c \rightarrow 0$ which suggests that entanglement effects may well play a significant part in determining D_S values even in the dilute regime. D_S values must be obtained by a technique which measures from first principles, the mean square displacements of molecules in random motion under conditions of thermodynamic equilibrium.

The comparison of s and D_S values for 110 000 M polystyrene in toluene has yielded a value for the static scaling index, v_G . This value would seem to be in agreement with the recent model of FRANCOIS et al which predicts that v_G can exceed the assymptotic limit of 0.6 for certain molar masses. However the restricted nature of the available data indicates that measurements on a higher molar mass polymer should be compared before firm conclusions may be drawn.

308

REFERENCES

BROCHARD, F. and DE GENNES, P.G.: Macromolecules IO, 1157 (1977) CALLAGHAN, P.T. and PINDER, D.N.: Macromolecules 13, 1085 (1980) CALLAGHAN, P.T. and PINDER, D.N.: Macromolecules, to be published (1981) CANTOW, M.J.R., PORTER, R.W. and JOHNSON, J.F,: Polymer Preprints 6, 338 (1965) DE GENNES, P.G.: Macromolecules 9, 596 (1976) FRANCOIS, **J., SCHWARTZ, T.** and WEILL **G.:** Macromolecules 13, 561 (1980) HERVET, H., LEGER, C. and RONDELEZ, F.: Phys. Rev. Lett. 42, 1681 (1979) POUYET, G,, FRANCOIS, J., DAYANTIS, J. and WEILL, G.: Macromolecules 13 **176** (1980) ROOTS, J., NYSTROM, B., SUNDELOF, L.O. and PORSCH, B.: Polymer 20, 377 (1979) WEILL, G. and DES CLOIZEAUX, J,: J des Phys. 40, 99 (1979) YAMAKAWA, H: J. Chem. Phys. 36, 2995 (1962)

Received July 2o, 1981 Accepted July 24, 1981